Rotherkopfite, KNa2(Fe2+2.5Ti4+1.5)Fe2+(Si4O12)2, a new neptunite-group mineral without essential lithium, from Rother Kopf, Eifel volcanic fields, Germany
-
Published:2024-08-19
Issue:4
Volume:36
Page:605-614
-
ISSN:1617-4011
-
Container-title:European Journal of Mineralogy
-
language:en
-
Short-container-title:Eur. J. Mineral.
Author:
Kampf Anthony R.ORCID, Möhn Gerhard, Ma ChiORCID, Rossman George R.ORCID, Désor Joy, Guan Yunbin
Abstract
Abstract. Rotherkopfite, KNa2(Fe2.52+Ti1.54+)Fe2+(Si4O12)2, is a new member of the neptunite group, from Rother Kopf, Roth, near Gerolstein, Eifel volcanic fields, Rhineland-Palatinate, Germany. It is found in cavities in a quartz–sanidine xenolith embedded in a vesicular alkaline basalt and is associated with fluorophlogopite and an amphibole supergroup mineral that is zoned from potassic-magnesio-fluoro-arfvedsonite on the exterior to potassic-fluoro-richterite in the core. It is presumed to have formed as the result of contact metasomatism of the xenolith by the alkaline basalt melt. Rotherkopfite occurs as brownish-red equant or tabular crystals, up to about 0.2 mm in maximum dimension. The mineral has a light-orange streak, a vitreous lustre, a Mohs hardness of ∼4.5, a brittle tenacity, a curved fracture and a density of 3.20(2) g cm−3. Optically, rotherkopfite crystals are biaxial (+), with α=1.668(5), β=1.678(5), γ=1.720(5) (white light) and 2V(meas) = 53.2(6)°. The empirical formula from electron microprobe analyses, secondary ion mass spectrometry and structure refinement is (K0.87Na0.20)Σ1.07(Na1.99Ca0.01)Σ2.00M1+M2(Fe1.662+Ti1.48Mg0.79Mn0.02)Σ3.95M3(Fe0.642+Li0.16Ti0.15Al0.01)Σ0.96(Si8.00O24). Rotherkopfite is monoclinic with space group C2/c and unit-cell parameters a=16.4599(17), b=12.5457(6), c=10.0487(7) Å, β=115.669(7)°, V=1870.3(3) Å3 and Z=4. The crystal structure (R1=0.0268 for 1324 reflections with I>2σI) is based on two interwoven three-dimensional frameworks: (1) a silicate framework made up of pyroxene-like chains of corner-sharing SiO4 tetrahedra and (2) an octahedral framework made up of chains of edge-sharing metal–oxygen octahedra. The two interwoven frameworks are bound to one another by corner sharing. K and Na are hosted in channels in the combined framework.
Publisher
Copernicus GmbH
Reference19 articles.
1. Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., and Rauch, F.: Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum, J. Geophys. Res., 108, 2105, https://doi.org/10.1029/2001JB000679, 2003. 2. Chukanov, N. V., Rastsvetaeva, R. K., Aksenov, S. M., Pekov, I. V., Zubkova, N. V., Britvin, S. N., Belakovskiy, D. I., Schueller, W., and Ternes, B.: Günterblassite, (K,Ca)3−xFe[(Si,Al)13O25(OH,O)4] ⋅ 7H2O, a new mineral: the first phyllosilicate with triple tetrahedral layer, Geol. Ore Dep., 54, 656–662, 2012. 3. Chukanov, N. V., Rastsvetaeva, R. K., Aksenov, D. M., Blass, G., Pekov, I. V., Belakovskiy, D. I., Tschörtner, J., Schüller, W., and Ternes, B.: Emmerichite, Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic region, Germany, New Data Min., 49, 5–13, 2014. 4. Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr. B, 71, 562–578, 2015. 5. Gunter, M. E., Bandli, B. R., Bloss, F. D., Evans, S. H., Su, S. C., and Weaver, R.: Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage, Microscope, 52, 23–39, 2004.
|
|