Author:
Bouma J.,Droogers P.,Sonneveld M. P. W.,Ritsema C. J.,Hunink J. E.,Immerzeel W. W.,Kauffman S.
Abstract
Abstract. Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to soils elsewhere with identical classifications. This principle also applies to catchments. However, to be useful, soil classifications have to be based on permanent characteristics as formed by the soil forming factors over often very long periods of time. When defining permanent catchment characteristics, discharge data would therefore appear to be less suitable. But permanent soil characteristics do not necessarily match with characteristics and parameters needed for functional soil characterization focusing, for example, on catchment hydrology. Hydropedology has made contributions towards the required functional characterization of soils as is illustrated for three recent hydrological catchment studies. However, much still needs to be learned about the physical behaviour of anisotropic, heterogeneous soils with varying soil structures during the year and about spatial and temporal variability. The suggestion is made therefore to first focus on improving simulation of catchment hydrology, possibly incorporating hydropedological expertise, before embarking on a catchment classification effort which involves major input of time and involves the risk of distraction. In doing so, we suggest to also define other characteristics for catchment performance than the traditionally measured discharge rates. Such characteristics may well be derived from societal issues being studied, as is illustrated for the Green Water Credits program.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference51 articles.
1. Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., and Allen, R. G.: SEBAL for spatially distributed ET under actual management and growing conditions, J. Irrig. Drain. E-ASCE, 131, 85–93, 2005.
2. Beven, K.: Searching for the Holy Grail of scientific hydrology: $Qt$=(S, R, $\\Delta t$)A as closure, Hydrol. Earth Syst. Sci., 10, 609–618, https://doi.org/10.5194/hess-10-609-2006, 2006.
3. Booltink, H. W. G. and Bouma, J.: Bypass flow. In: Methods of Soil Analysis. Part 4: Physical methods, SSSA Book series: 5. Madison, Wis., 930–933, 2002.
4. Bouma, J.: Soil morphology and preferential flow along macropores, Agric. Water Manage., 3(4), 235–250, 1981.
5. Bouma, J.: Measuring the hydraulic conductivity of soil horizons with continuous macropores, Soil Sci. Soc. Am. J., 46(2), 438–441, 1982.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献