Evaluation of novel SNPs and haplotypes within the <i>ATBF1</i> gene and their effects on economically important production traits in cattle

Author:

Xu Han,Zhang Sihuan,Zhang Xiaoyan,Dang Ruihua,Lei Chuzhao,Chen Hong,Lan Xianyong

Abstract

Abstract. AT motif binding factor 1 (ATBF1) gene can promote the expression level of the growth hormone 1 (GH1) gene by binding to the enhancers of the POU1F1 and PROP1 genes; thus, it affects the growth and development of livestock. Considering that the ATBF1 gene also has a close relationship with the Janus kinase–signal transductor and activator of transcription (JAK–STAT) pathway, the objective of this work was to identify novel single-nucleotide polymorphism (SNP) variations and their association with growth traits in native Chinese cattle breeds. Five novel SNPs within the ATBF1 gene were found in 644 Qinchuan and Jinnan cattle for first time using 25 pairs of screening and genotyping primers. The five novel SNPs were named as AC_000175:g.140344C>G (SNP1), g.146573T>C (SNP2), g.205468C>T (SNP3), g.205575A>G (SNP4) and g.297690C<T (SNP5). Among them, SNP1 and SNP2 were synonymous coding SNPs, while SNP5 was a missense coding SNP, and the other SNPs were intronic. Haplotype analysis found 18 haplotypes in the two breeds, and three and five closely linked loci were revealed in Qinchuan and Jinnan breeds, respectively. Association analysis revealed that SNP1 was significantly associated with the height across the hip in Qinchuan cattle. SNP2 was found to be significantly related to chest circumference and body side length traits in Jinnan cattle. SNP3 was found to have significant associations with four growth traits in Qinchuan cattle. Moreover, the different combined genotypes, SNP1–SNP3, SNP1–SNP4 and SNP2–SNP5 were significantly associated with the growth traits in cattle. These findings indicated that the bovine ATBF1 gene had marked effects on growth traits, and the growth-trait-related loci can be used as DNA markers for maker-assisted selection (MAS) breeding programs in cattle.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3