Systematic detection of local CH<sub>4</sub> anomalies by combining satellite measurements with high-resolution forecasts
-
Published:2021-04-01
Issue:6
Volume:21
Page:5117-5136
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Barré Jérôme, Aben Ilse, Agustí-Panareda Anna, Balsamo GianpaoloORCID, Bousserez Nicolas, Dueben PeterORCID, Engelen RichardORCID, Inness AntjeORCID, Lorente AlbaORCID, McNorton Joe, Peuch Vincent-HenriORCID, Radnoti Gabor, Ribas Roberto
Abstract
Abstract. In this study, we present a novel monitoring methodology that combines satellite retrievals and forecasts to detect local CH4 concentration
anomalies worldwide. These anomalies are caused by rapidly changing anthropogenic emissions that significantly contribute to the CH4 atmospheric
budget and by biases in the satellite retrieval data. The method uses high-resolution (7 km × 7 km) retrievals of
total column CH4 from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel 5 Precursor satellite. Observations are
combined with high-resolution CH4 forecasts (∼ 9 km) produced by the Copernicus Atmosphere Monitoring Service (CAMS) to provide
departures (observations minus forecasts) at close to the satellite's native resolution at appropriate time. Investigating these departures is an effective
way to link satellite measurements and emission inventory data in a quantitative manner. We perform filtering on the departures to remove the
synoptic-scale and meso-alpha-scale biases in both forecasts and satellite observations. We then apply a simple classification scheme to the filtered
departures to detect anomalies and plumes that are missing (e.g. pipeline or facility leaks), underreported or
overreported (e.g. depleted drilling fields) in the CAMS emissions. The classification method also shows some limitations to detect emission anomalies only due to
local satellite retrieval biases linked to albedo and scattering issues.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference44 articles.
1. Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.:
Modelling CO2 weather – why horizontal resolution matters,
Atmos. Chem. Phys.,
19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, 2019. 2. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.:
Assessment of methane emissions from the U. S. oil and gas supply chain,
Science,
361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. 3. Barré, J., Massart, S., Ades, M., Jones, L., and Engelen, R.:
Emission optimisations first attempt based on Ensemble of Data Asssimilation for atmospheric composition, ECMWF,
ECMWF technical memorada, https://doi.org/10.21957/4grkg5ga0, 2019. 4. Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.:
Estimating lockdown induced European NO2 changes,
Atmos. Chem. Phys. Discuss. [preprint],
https://doi.org/10.5194/acp-2020-995, in review, 2020. 5. Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.:
Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals,
J. Geophys. Res.,
114, D22301, https://doi.org/10.1029/2009JD012287, 2009.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|