Reconstruction of warm-season temperatures in central Europe during the past 60 000 years from lacustrine branched glycerol dialkyl glycerol tetraethers (brGDGTs)

Author:

Zander Paul D.ORCID,Böhl Daniel,Sirocko Frank,Auderset AlexandraORCID,Haug Gerald H.,Martínez-García Alfredo

Abstract

Abstract. Millennial-scale climate variations during the last glacial period, such as Dansgaard–Oeschger (DO) cycles and Heinrich events, have been extensively studied using ice core and marine proxy records. However, there is a limited understanding of the magnitude of these temperature fluctuations in continental regions, and questions remain about the seasonal signal of these climate events. This study presents a 60 000-year-long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) extracted from lake sediments from the Eifel Volcanic Field, Germany. brGDGTs are bacterial membrane-spanning lipids that are known to have a strong relationship with temperature, making them suitable for temperature reconstructions. We test several temperature calibration models on modern samples taken from soils and multiple maar lakes. We find a negative bias in brGDGT-based temperature estimates associated with water depth and anoxic conditions that can be corrected for by accounting for a brGDGT isomer that is only produced in anoxic conditions. The corrected temperature reconstruction correlates with proxy and climate model estimates of temperature spanning the same time period, validating the calibration approach we selected. However, millennial-scale variability is significantly dampened in the brGDGT record, and in contrast to other Northern Hemisphere climate records, during several Heinrich stadials, temperatures actually increase. We demonstrate that these apparent discrepancies can be explained by the unique seasonal response of the brGDGT paleothermometer to temperatures of months above freezing (TMAF). Our data support the view that warm-season temperatures in Europe varied minimally during the last glacial period and that abrupt millennial-scale events were defined by colder, longer winters. Our continuous high-resolution temperature reconstruction provides important information about the magnitude of seasonal climate variability during the last glacial period that can be used to test climate models and inform studies of paleoecological change.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Johannes Gutenberg-Universität Mainz

Max-Planck-Institut für Chemie

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3