Sequence Conservation Analysis and Gene Relationships of Nucleocapsid (N) Gene in Orthocoronavirinae Subfamily

Author:

Nugrahapraja Husna,Nugraha Adi,Fauzi Alidza

Abstract

Coronavirus (CoV) is a virus that causes respiratory and gastrointestinal diseases in animals and humans. It belongs to the Orthocoronavirina. The nucleocapsid protein (N) plays multiple roles in virus assembly, RNA transcription, and interaction with host cells. This study aimed to analyse the N protein by identifying conserved residues and exploring the gene and protein relationships within the Orthocoronavirinae. Therefore the results of this study are expected to help identify conserved regions of N protein in SARS-CoV-2 which can be used as probes for the virus identification process and can be used as target areas in vaccine development. We used 159 N gene and protein sequences, including 64 from Alpha, 51 from Beta-, 11 from Delta-, and 20 from Gammacoronavirus genera of the Orthocoronavirinae. Three sequences from Tobaniviridae were used as outgroups. Multiple sequence alignment (MSA) and phylogenetic tree analysis were performed using the neighbour-joining and Maximum Likelihood. The MSA results revealed several conserved residues, ranging from 18 to 41, were located in the N-terminal and Cterminal domains, the linker region, Nuclear Localization Signal (NLS), Nuclear Export Signal (NES) motifs, and Packing Signal (PS) binding sites. The phylogenetic tree analysis indicated that Gammacoronavirus and Deltacoronavirus were closely related to Betacoronavirus, while Alfacoronavirus showed the most distant relationship. Furthermore, the study identified 23 conserved residues involved in RNA binding, including amino acids such as Ser89, Val111, Pro112, Gly124, Tyr125, Phe150, Tyr151, Gly154, Thr155, Gly156, Trp180, Val181, Gly409, Arg411, Asn419, Gly421, and Pro443. These residues interacted with phosphate groups, nitrogenous bases, and pentose sugars and exhibited non-specific interactions with RNA. In summary, this study investigated the N protein in the Orthocoronavirinae subfamily, providing insights into its function, structure, and evolutionary relationships.

Publisher

EDP Sciences

Subject

General Medicine

Reference52 articles.

1. International Committee on Taxonomy of Viruses, 2012. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Oxford: Elsevier.

2. Spickler A. R., Roth J. A., Galyon J. & Brown G., 2016. Transboundary and Emerging Diseases of Animals. 1st ed. Ames: Iowa State University.

3. Enhanced human enterovirus 71 infection by endocytosis inhibitors reveals multiple entry pathways by enterovirus causing hand-foot-and-mouth diseases

4. Review of Infectious Bronchitis Virus Around the World

5. The Pirbright Institute, n.d. Infectious bronchitis virus. [Online] Available at: https://www.pirbright.ac.uk/viruses/infectious-bronchitis-virus [Accessed 28 August 2021].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3