Analysis of early warning signal of land degradation risk based on time series of remote sensing data

Author:

Boali Abdolhossein,Kariminejad Narges,Hosseinalizadeh Mohsen,Shafaie Vahid,Movahedi Rad Majid,Pourghasemi Hamid Reza

Abstract

This study explores the spatio-temporal dynamics of the Normalized Difference Vegetation Index (NDVI) to detect early signs of land degradation. Utilizing high-resolution NDVI data from the Google Earth Engine, spanning from 2004 to 2023 with a 30-meter resolution, this research analyzes monthly variations. To illustrate these dynamics, the study focuses on Sabzevar County, located in northeastern Iran, which extends over 7,217 km²and is approximately 220 kilometers distant from Mashhad. Validation of the NDVI data was performed using field observations from strategically located vegetation plots. One square meter plots were systematically established along 100-meter transects (10 transects in total), where the vegetation coverage in each plot was quantitatively assessed by experts. Comprehensive statistical analysis incorporated Kendall’s tie test, alongside measurements of autocorrelation, coefficient of variation, and standard deviation, using R software to assess the trends and intensities of NDVI changes. The findings revealed a critical breakpoint in 2020, with increases in all three statistical indices— autocorrelation 0.82, coefficient of variation 0.65, and standard deviation 0.58—indicative of accelerating degradation prior to this year. Furthermore, the intensity of NDVI changes varied significantly across the study area, ranging from 0.05 in central and northern regions to 0.76 in the western parts. This research underscores the value of integrating field data with remote sensing technology to provide a robust analytical tool for early detection of land degradation. This method enables precise, timely assessment and proactive management of vulnerable ecosystems, particularly in arid regions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3