Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction

Author:

Laurino FedericaORCID,Zunino PaoloORCID

Abstract

Multiscale methods based on coupled partial differential equations defined on bulk and embedded manifolds are still poorly explored from the theoretical standpoint, although they are successfully used in applications, such as microcirculation and flow in perforated subsurface reservoirs. This work aims at shedding light on some theoretical aspects of a multiscale method consisting of coupled partial differential equations defined on one-dimensional domains embedded into three-dimensional ones. Mathematical issues arise because the dimensionality gap between the bulk and the inclusions is larger than one, that is the high dimensionality gap case. First, we show that such model derives from a system of fully three-dimensional equations, by the application of a topological model reduction approach. Secondly, we rigorously analyze the problem, showing that the averaging operators applied for the model reduction introduce a regularization effect that resolves the issues due to the singularity of solutions and to the ill-posedness of restriction operators. Then, we exploit the structure of the model reduction technique to analyze the modeling error. This study confirms that for infinitesimally small inclusions, the modeling error vanishes. Finally, we discretize the problem by means of the finite element method and we analyze the approximation and the model error by means of numerical experiments.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference44 articles.

1. Alinhac S. and Gérard P., Pseudo-differential operators and the Nash-Moser theorem. In: Vol. 82 of Graduate Studies in Mathematics. Translated from the 1991 French original. American Mathematical Society, Providence, RI (2007).

2. A finite element method for quantum graphs

3. Berkolaiko G., Carlson R., Fulling S.A. and Kuchment P., Quantum graphs and their applications. In: Vol. 415 of Contemporary Mathematics. American Mathematical Society, Providence, RI (2006) 97–120.

4. Local error estimates of the finite element method for an elliptic problem with a Dirac source term

5. Analysis of coupled intra- and extraluminal flows for single and multiple capillaries

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3