Galaxy and Mass Assembly (GAMA)

Author:

Sureshkumar U.ORCID,Durkalec A.ORCID,Pollo A.ORCID,Bilicki M.ORCID,Loveday J.ORCID,Farrow D. J.ORCID,Holwerda B. W.ORCID,Hopkins A. M.,Liske J.ORCID,Pimbblet K. A.,Taylor E. N.,Wright A. H.ORCID

Abstract

Context. Galaxies are biased tracers of the underlying network of dark matter. The strength of this bias depends on various galaxy properties and on redshift. One of the methods used to study these dependences of the bias is measurement of galaxy clustering. Such studies are made using galaxy samples from various catalogues, which frequently bear their own problems related to sample selection methods. It is therefore crucial to understand how sample choice influences clustering measurements and which galaxy property is the most direct tracer of the galaxy environment. Aims. We investigate how different galaxy properties, such as luminosities in the u, g, r, J, and K bands, stellar mass, star formation rate, and specific star formation rate, trace the environment in the local universe. We also study the effect of survey flux limits on galaxy clustering measurements. Methods. We measure the two-point correlation function and marked correlation functions using the aforementioned properties as marks. We use a nearly stellar-mass-complete galaxy sample in the redshift range 0.1 < z < 0.16 from the Galaxy and Mass Assembly (GAMA) survey with a flux limit of r < 19.8. Further, we impose a brighter flux limit of r < 17.8 on our sample and repeated the measurements to study how this affects galaxy clustering analysis. We compare our results to measurements from the Sloan Digital Sky Survey with flux limits of r < 17.8 and r < 16.8. Results. We show that the stellar mass is the most direct tracer of galaxy environment, the K-band luminosity being a good substitute, although such a proxy sample misses close pairs of evolved, red galaxies. We also show that the u-band luminosity can be a proxy to the star formation rate in the context of galaxy clustering. We observe an effect of the survey flux limit on clustering studies; samples with a higher flux limit (smaller magnitude) miss some information about close pairs of starburst galaxies.

Funder

Polish National Science Centre

Jagiellonian University

Polish Ministry of Science and Higher Education

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving constraint on Ωm from SDSS using marked correlation functions;Science China Physics, Mechanics & Astronomy;2024-07-17

2. Do galaxy mergers prefer under-dense environments?;Astronomy & Astrophysics;2024-05-28

3. Cosmological Information in the Marked Power Spectrum of the Galaxy Field;The Astrophysical Journal;2023-07-01

4. Galaxy and Mass Assembly (GAMA);Astronomy & Astrophysics;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3