Transition disc nature of post-AGB binary systems confirmed by mid-infrared interferometry

Author:

Corporaal A.ORCID,Kluska J.ORCID,Van Winckel H.ORCID,Andrych K.,Cuello N.ORCID,Kamath D.ORCID,Mérand A.

Abstract

Context. Many properties of circumbinary discs around evolved post-asymptotic giant branch (post-AGB) binary systems are similar to those of protoplanetary discs around young stars. The deficits of near-infrared (near-IR) flux in the spectral energy distributions (SEDs) of these systems hints towards large dust-free cavities that are reminiscent of transition discs as are commonly observed around young stars. Aims. We aim to assess the size of the inner rim of six post-AGB binary systems with lack in the near-IR like this. We used resolved mid-infrared (mid-IR) high-angular resolution observations of VLTI/MATISSE and VLTI/MIDI. The inner rim of only one such system was previously resolved. We compared these inner rim sizes to five systems with available MATISSE data that were identified to host a disc starting at the dust sublimation radius. Methods. We used geometric ring models to estimate the inner rim sizes, the relative flux contributions of the star, the ring, and an over-resolved emission, the orientation of the ring, and the spectral dependences of the components. Results. We find that the inner dust rims of the targets with a lack of near-IR excess in their SEDs are ∼2.5 to 7.5 times larger than the theoretical dust sublimation radii, and inner rim sizes of the systems that do not show this deficit are similar to those of their theoretical dust sublimation radii. The physical radii of the inner rims of these transition discs around post-AGB binaries are 3–25 au, which are larger than the disc sizes inferred for transition discs around young stars with VLTI/MIDI. This is due to the higher stellar luminosities of post-AGB systems compared to young stars, implying larger dust sublimation radii and thus larger physical inner radii of the transition disc. Conclusions. With mid-IR interferometric data, we directly confirm the transition disc nature of six circumbinary discs around post-AGB binary systems. Future observational and modelling efforts are needed to progress in our understanding of the structure, origin, and evolution of these transition discs.

Funder

FWO

ERC

ARC

ASTRO 3D

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3