Protoplanet collisions: New scaling laws from smooth particle hydrodynamics simulations

Author:

Crespi S.ORCID,Ali-Dib M.,Dobbs-Dixon I.

Abstract

One common approach for solving collisions between protoplanets in simulations of planet formation is to employ analytical scaling laws. The most widely used one was developed by Leinhardt & Stewart (2012, ApJ, 745, 79) from a catalog of ~180 N-body simulations of rubble–pile collisions. In this work, we use a new catalogue of more than 20 000 SPH simulations to test the validity and the prediction capability of Leinhardt & Stewart (2012, ApJ, 745, 79) scaling laws. We find that these laws overestimate the fragmentation efficiency in the merging regime and they are not able to properly reproduce the collision outcomes in the super-catastrophic regime. In the merging regime, we also notice a significant dependence between the collision outcome, in terms of the largest remnant mass, and the relative mass of the colliding protoplanets. Here, we present a new set of scaling laws that are able to better predict the collision outcome in all regimes and it is also able to reproduce the observed dependence on the mass ratio. We compare our new scaling laws against a machine learning approach and obtain similar prediction efficiency.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3