A Bayesian estimation of the Milky Way’s circular velocity curve using Gaia DR3

Author:

Põder SvenORCID,Benito María,Pata Joosep,Kipper Rain,Ramler Heleri,Hütsi Gert,Kolka Indrek,Thomas Guillaume F.

Abstract

Aims. Our goal is to calculate the circular velocity curve of the Milky Way, along with corresponding uncertainties that quantify various sources of systematic uncertainty in a self-consistent manner. Methods. The observed rotational velocities are described as circular velocities minus the asymmetric drift. The latter is described by the radial axisymmetric Jeans equation. We thus reconstruct the circular velocity curve between Galactocentric distances from 5 kpc to 14 kpc using a Bayesian inference approach. The estimated error bars quantify uncertainties in the Sun’s Galactocentric distance and the spatial-kinematic morphology of the tracer stars. As tracers, we used a sample of roughly 0.6 million stars on the red giant branch stars with six-dimensional phase-space coordinates from Gaia Data Release 3 (DR3). More than 99% of the sample is confined to a quarter of the stellar disc with mean radial, rotational, and vertical velocity dispersions of (35 ± 18) km s−1, (25 ± 13) km s−1, and (19 ± 9) km s−1, respectively. Results. We find a circular velocity curve with a slope of 0.4 ± 0.6 km s−1 kpc−1, which is consistent with a flat curve within the uncertainties. We further estimate a circular velocity at the Sun’s position of vc(R0) = 233 ± 7 km s−1 and that a region in the Sun’s vicinity, characterised by a physical length scale of ∼1 kpc, moves with a bulk motion of VLSR = 7 ± 7 km s−1. Finally, we estimate that the dark matter (DM) mass within 14 kpc is log10 MDM(R < 14kpc)/ M=(11.2+2.0-2.3) and the local spherically averaged DM density is ρDM(RO)=(0.41+0.10-0.09) GeV cm-3 = (0.011+0.003-0.002) Mpc-3. In addition, the effect of biased distance estimates on our results is assessed.

Funder

Estonian Research Council

European Regional Development Fund

Agencia Estatal de Investigación del Ministerio de Ciencia en Innovación

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3