Quiet Sun flux rope formation via incomplete Taylor relaxation

Author:

Robinson Rebecca A.ORCID,Aulanier Guillaume,Carlsson Mats

Abstract

Context. Low-altitude nanoflares are among the candidates for atmospheric heating in the quiet Sun’s corona. Low-altitude twisted magnetic fields may be involved in such events, as they are in larger flares. But for nanoflares, the exact role, topology, and formation mechanisms of these twisted fields remain to be studied. Aims. In this paper, we investigate the formation and evolution of a preflare flux rope in a fully stratified, 3D magnetohydrodynamics simulation of the quiet Sun using the Bifrost code. This study focuses on the time period before the rope eventually reconnects with an overlying field, resulting in a nanoflare-scale energy on the order of 1017 J. One puzzle is that this modeled flux rope does not form by any of the mechanisms usually at work in larger flares, such as flux emergence, flux cancellation, or tether-cutting reconnection. Methods. Using Lagrangian markers to trace representative field lines, we follow the spatiotemporal evolution of the flux rope. By focusing on current volumes (which we call current sheets) between these lines, we identify flux bundles and associated reconnecting field line pairs. We also analyze the time-varying distribution function for the force-free parameter as the flux rope relaxes. Lastly, we compare different seeding methods for tracing magnetic field lines, and discuss their relevance to the analysis. Results. We show that the modeled flux rope is gradually built from the coalescence of numerous current-carrying flux tubes. This occurs through a series of component reconnections that are continuously driven by the complex flows in the underlying convection zone. These reconnections lead to an inverse cascade of helicity from small scales to larger scales. We also find that the system attempts to relax toward a linear force-free field, but that the convective drivers and the nanoflare event prevent full Taylor relaxation. Conclusions. Using a self-consistently driven simulation of a nanoflare event, we show for the first time an inverse helicity cascade tending toward a Taylor relaxation in the Sun’s corona, resulting in a well-ordered flux rope that later reconnects with surrounding fields. This provides context clues toward understanding the buildup of nanoflare events in the quiet Sun through incomplete Taylor relaxations, when no relevant flux emergence or cancellation is observed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3