The disk of the eruptive protostar V900 Mon. A MATISSE/VLTI and MUSE/VLT perspective

Author:

Lykou F.,Abraham P.,Cruz-Saenz de Miera F.,Varga J.,Kospal A.,Bouwman J.,Chen L.,Kraus S.,Sitko M.L.,Russell R.W.,Pikhartova M.

Abstract

In this work, we study the silicate dust content in the disk of one of the youngest eruptive stars, V900 Mon, at the highest angular resolution, probing down to the inner 10 au of said disk, and study the historical evolution of the system, traced in part by a newly discovered emission clump. We performed high angular resolution MIR interferometric observations of V900 Mon with MATISSE/VLTI with a spatial coverage ranging from 38-m to 130-m baselines, and compared them to archival MIDI/VLTI data. We also mined and re-analyzed archival optical and infrared photometry of the star to study its long-term evolution since its eruption in the 1990s. We complemented our findings with integral field spectroscopy data from MUSE/VLT. The MATISSE/VLTI data suggest a radial variation in the silicate feature in the dusty disk, whereby at large spatial scales ($ au) the protostellar disk's emission is dominated by large-sized ($ silicate grains, while at smaller spatial scales and closer to the star ($ au) silicate emission is absent, suggesting self-shielding. We propose that the self-shielding may be the result of small dust grains at the base of the collimated CO outflow previously detected by ALMA. A newly discovered knot in the MUSE/VLT data, located at a projected distance approximately 27,000 au from the star, is co-aligned with the molecular gas outflow at a P.A. of 250 consistent with the position angle and inclination of the disk. The knot is seen in emission in Halpha N ii and the S II doublet and its kinematic age is about 5150 years. This ejected material could originate from a previous eruption.

Funder

Hungarian Scientific Research Fund

European Research Council

Science and Technology Facilities Council

National Aeronautics and Space Administration

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3