Advancing interplanetary magnetohydrodynamic models through solar energetic particle modelling

Author:

Niemela A.ORCID,Wijsen N.ORCID,Aran A.ORCID,Rodriguez L.ORCID,Magdalenic J.,Poedts S.ORCID

Abstract

Aims. This study utilises a modelling approach to investigate the impact of perturbed solar wind conditions caused by multiple interplanetary coronal mass ejections (ICMEs) on the evolution of solar energetic particle (SEP) distributions. Furthermore, we demonstrate the utility of SEP models in evaluating the performance of solar wind and coronal mass ejection (CME) models. To illustrate these concepts, we focussed on modelling the gradual SEP event that occurred on 2023 March 15. Methods. We utilised the 3D magnetohydrodynamic model EUHFORIA (EUropean Heliospheric FORecasting Information Asset) to simulate the various ICMEs that caused the highly perturbed solar wind conditions observed during the March 15 event. We conducted three separate EUHFORIA simulations, employing both non-magnetised and magnetised models for these ICMEs. To analyse the behaviour of energetic particles in the simulated solar wind environments, we employed the energetic particle transport and acceleration model PARADISE (PArticle Radiation Asset Directed at Interplanetary Space Exploration). Results. In the vicinity of Earth, the three EUHFORIA simulations exhibit strong similarities and closely match the observed in situ data. Nevertheless, when incorporating these distinct solar wind configurations into PARADISE, notable disparities emerge in the simulated SEP intensities. This discrepancy can be attributed to the different magnetic enhancements and closed magnetic structures introduced by the different CME models within the EUHFORIA simulations. These variations strongly impact the transport mechanisms of SEPs, leading to significant deviations in the particle intensities simulated by PARADISE. Furthermore, our findings highlight the significance of cross-field diffusion even in scenarios with reduced perpendicular mean free path. This effect becomes particularly prominent when SEPs are trapped within the inner heliosphere due to the presence of ICMEs. In these scenarios, the extended duration of confinement allows the slower cross-field diffusion process to become more pronounced and exert a greater influence on the spatial distribution of SEPs, especially near and within the boundaries of ICMEs. Conclusions. Solar energetic particle models enable us to indirectly validate the accuracy of the underlying solar wind and CME models across significant portions of the heliosphere, rather than solely relying on discrete points where spacecraft are situated. This broader validation provides valuable insights into the reliability and effectiveness of the CME models on a global scale.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3