Abstract
Galaxies with nuclear bars are believed to efficiently drive gas inward, generating a nuclear starburst and possibly an active galactic nucleus. We confirm this scenario for the isolated, double-barred, luminous infrared galaxy ESO 320-G030 based on an analysis of Herschel and ALMA spectroscopic observations. Herschel/PACS and SPIRE observations of ESO 320-G030 show absorption or emission in 18 lines of H2O, which we combine with the ALMA H2O 423 − 330 448 GHz line (Eupper ∼ 400 K) and continuum images to study the physical properties of the nuclear region. Radiative transfer models indicate that three nuclear components are required to account for the multi-transition H2O and continuum data. An envelope, with radius R ∼ 130 − 150 pc, dust temperature Tdust ≈ 50 K, and NH2 ∼ 2 × 1023 cm−2, surrounds a nuclear disk with R ∼ 40 pc that is optically thick in the far-infrared (τ100 μm ∼ 1.5 − 3, NH2 ∼ 2 × 1024 cm−2). In addition, an extremely compact (R ∼ 12 pc), warm (≈100 K), and buried (τ100 μm > 5, NH2 ≳ 5 × 1024 cm−2) core component is required to account for the very high-lying H2O absorption lines. The three nuclear components account for 70% of the galaxy luminosity (SFR ∼ 16 − 18 M⊙ yr−1). The nucleus is fed by a molecular inflow observed in CO 2-1 with ALMA, which is associated with the nuclear bar. With decreasing radius (r = 450 − 225 pc), the mass inflow rate increases up to Ṁinf ∼ 20 Ṁ yr−1, which is similar to the nuclear star formation rate (SFR), indicating that the starburst is sustained by the inflow. At lower r, ∼100 − 150 pc, the inflow is best probed by the far-infrared OH ground-state doublets, with an estimated Ṁinf ∼ 30 Ṁ yr−1. The inferred short timescale of ∼20 Myr for nuclear gas replenishment indicates quick secular evolution, and indicates that we are witnessing an intermediate stage (< 100 Myr) proto-pseudobulge fed by a massive inflow that is driven by a strong nuclear bar. We also apply the H2O model to the Herschel far-infrared spectroscopic observations of H218O, OH, 18OH, OH+, H2O+, H3O+, NH, NH2, NH3, CH, CH+, 13CH+, HF, SH, and C3, and we estimate their abundances.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献