The scattering order problem in Monte Carlo radiative transfer

Author:

Krieger A.,Wolf S.

Abstract

Radiative transfer simulation is an important tool that allows us to generate synthetic images of various astrophysical objects. In the case of complex three-dimensional geometries, a Monte Carlo-based method that simulates photon packages as they move through and interact with their environment is often used. Previous studies have shown, in the regime of high optical depths, that the required number of simulated photon packages strongly rises and estimated fluxes may be severely underestimated. In this paper we identify two problems that arise for Monte Carlo radiative transfer simulations that hinder a proper determination of flux: first, a mismatch between the probability and weight of the path of a photon package and second, the necessity of simulating a wide range of high scattering orders. Furthermore, we argue that the peel-off method partly solves these problems, and we additionally propose an extended peel-off method. Our proposed method improves several shortcomings of its basic variant and relies on the utilization of precalculated sphere spectra. We then combine both peel-off methods with the Split method and the Stretch method and numerically evaluate their capabilities as opposed to the pure Split & Stretch method in an infinite plane-parallel slab setup. We find that the peel-off method greatly enhances the performance of these simulations; in particular, at a transverse optical depth of τmax = 75 our method achieved a significantly lower error than previous methods while simultaneously saving > 95% computation time. Finally, we discuss the inclusion of polarization and Mie-scattering in the extended peel-off method, and argue that it may be necessary to equip future Monte Carlo radiative transfer simulations with additional advanced pathfinding techniques.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3