From super-Earths to sub-Neptunes: Observational constraints and connections to theoretical models

Author:

Parc LénaORCID,Bouchy FrançoisORCID,Venturini JuliaORCID,Dorn CarolineORCID,Helled RavitORCID

Abstract

The growing number of well-characterized exoplanets smaller than Neptune enables us to conduct more detailed population studies. We have updated the PlanetS catalog of transiting planets with precise and robust mass and radius measurements and use this comprehensive catalog to explore mass-radius (M–R) diagrams. On the one hand, we propose new M–R relationships to separate exoplanets into three populations: rocky planets, volatile-rich planets, and giant planets. On the other hand, we explore the transition in radius and density between super-Earths and sub-Neptunes around M-dwarfs and compare them with those orbiting K- and FG-dwarfs. Using Kernel density estimation method with a re-sampling technique, we estimated the normalized density and radius distributions, revealing connections between observations and theories on composition, internal structure, formation, and evolution of these exo-planets orbiting different spectral types. First, the substantial 30% increase in the number of well-characterized exoplanets orbiting M-dwarfs compared with previous studies shows us that there is no clear gap in either composition or radius between super-Earths and sub-Neptunes. The “water-worlds” around M-dwarfs cannot correspond to a distinct population, their bulk density and equilibrium temperature can be interpreted by several different internal structures and compositions. The continuity in the fraction of volatiles in these planets suggests a formation scenario involving planetesimal or hybrid pebble-planetesimal accretion. Moreover, we find that the transition between super-Earths and sub-Neptunes appears to happen at different masses (and radii) depending on the spectral type of the star. The maximum mass of super-Earths seems to be close to 10 M for all spectral types, but the minimum mass of sub-Neptunes increases with the star’s mass, and is around 1.9 M, 3.4 M, and 4.3 M, for M-dwarfs, K-dwarfs, and FG-dwarfs, respectively. The precise value of this minimum mass may be affected by observational bias, but the trend appears to be reliable. This effect, attributed to planet migration, also contributes to the fading of the radius valley for M-planets compared to FGK-planets. While sub-Neptunes are less common around M-dwarfs, smaller ones (1.8 Re < Rp < 2.8 R) exhibit lower density than their equivalents around FGK-dwarfs. Nonetheless, the sample of well-characterized small exoplanets remains limited, and each new discovery has the potential to reshape our understanding and interpretations of this population in the context of internal structure, composition, formation, and evolution models. Broader consensus is also needed for internal structure models and atmospheric compositions to enhance density interpretation and observable predictions for the atmospheres of these exoplanets.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3