Extreme magnetic field modulus variability of the Bp star HD 57372

Author:

Hubrig S.ORCID,Chojnowski S. D.ORCID,Järvinen S. P.ORCID,Ilyin I.ORCID,Pan K.ORCID

Abstract

Context. In chemically peculiar Ap/Bp stars with large-scale organised magnetic fields of simple centred dipole configuration, the ratio between the maximum and the minimum of the mean magnetic field modulus is on the order of 1.25. Values of two or more are observed only for very few Ap/Bp stars and are indicative of a very unusual magnetic field geometry. Aims. Determining the magnetic field structure of Ap/Bp stars is bound to provide a different insight into the physics and the origin of the magnetic fields in early-type stars. In this respect, the Bp star HD 57372 is of particular interest because strongly variable magnetically split lines have been observed in HARPS and APOGEE spectra. Methods. We obtained and analysed measurements of the mean magnetic field modulus and of the mean longitudinal magnetic field using near-infrared spectra and optical polarimetric spectra distributed over the stellar rotation period. Results. The mean magnetic field modulus 〈B〉 of HD 57372, as estimated from absorption lines that are split via the Zeeman effect and resolved in both optical and near-infrared spectra, is found to vary by an extraordinary amount: about 10 kG. The exceptional value of three for the ratio between the maximum and the minimum of the field modulus is indicative of a very unusual geometry for HD 57372’s magnetic field. All observable quantities were found to vary in phase with the photometric period of 7.889 days. This includes the longitudinal magnetic field 〈Bz〉, which varies from −6 kG up to 1.7 kG in FORS2 spectra, as well as the metal line strengths, whose equivalent widths change by up to 50% of their mean values over the course of the rotation period. The B8 temperature class of HD 57372 also places it among the hottest stars known to exhibit resolved, magnetically split lines.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3