Generic low-atmosphere signatures of swirled-anemone jets

Author:

Joshi ReetikaORCID,Aulanier GuillaumeORCID,Radcliffe Alice,Rouppe van der Voort LucORCID,Pariat EtienneORCID,Nóbrega-Siverio DanielORCID,Schmieder BrigitteORCID

Abstract

Context. Solar jets are collimated plasma flows moving along magnetic field lines and are accelerated at low altitude following magnetic reconnection. Several of them originate from anemone-shaped low-lying arcades, and the most impulsive ones tend to be relatively wider and display untwisting motions. Aims. We aim to establish typical behaviours and observational signatures in the low atmosphere that can occur in response to the coronal development of such impulsive jets. Methods. We analysed an observed solar jet associated with a circular flare ribbon using high-resolution observations from SST coordinated with IRIS and SDO. We related specifically identified features with those developing in a generic 3D line-tied numerical simulation of reconnection-driven jets performed with the ARMS code. Results. We identified three features in the SST observations: the formation of a hook along the circular ribbon, the gradual widening of the jet through the apparent displacement of its kinked edge towards (and not away) from the presumed reconnection site, and the falling back of some of the jet plasma towards a footpoint offset from that of the jet itself. The 3D numerical simulation naturally accounts for these features, which were not imposed a priori. Our analyses allowed us to interpret them in the context of the 3D geometry of the asymmetric swirled-anemone loops and their sequences of reconnection with ambient coronal loops. Conclusions. Given the relatively simple conditions in which the observed jet occurred, together with the generic nature of the simulation that comprised minimum assumptions, we predict that the specific features that we identified and interpreted are probably typical of every impulsive jet.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3