Simulation-based inference with neural posterior estimation applied to X-ray spectral fitting

Author:

Barret DidierORCID,Dupourqué SimonORCID

Abstract

Context. Neural networks are being extensively used for modeling data, especially in the case where no likelihood can be formulated. Aims. Although in the case of X-ray spectral fitting the likelihood is known, we aim to investigate the ability of neural networks to recover the model parameters and their associated uncertainties and to compare their performances with standard X-ray spectral fitting, whether following a frequentist or Bayesian approach. Methods. We applied a simulation-based inference with neural posterior estimation (SBI-NPE) to X-ray spectra. We trained a network with simulated spectra generated from a multiparameter source emission model folded through an instrument response, so that it learns the mapping between the simulated spectra and their parameters and returns the posterior distribution. The model parameters are sampled from a predefined prior distribution. To maximize the efficiency of the training of the neural network, while limiting the size of the training sample to speed up the inference, we introduce a way to reduce the range of the priors, either through a classifier or a coarse and quick inference of one or multiple observations. For the sake of demonstrating working principles, we applied the technique to data generated from and recorded by the NICER X-ray instrument, which is a medium-resolution X-ray spectrometer covering the 0.2–12 keV band. We consider here simple X-ray emission models with up to five parameters. Results. SBI-NPE is demonstrated to work equally well as standard X-ray spectral fitting, both in the Gaussian and Poisson regimes, on simulated and real data, yielding fully consistent results in terms of best-fit parameters and posterior distributions. The inference time is comparable to or smaller than the one needed for Bayesian inference when involving the computation of large Markov chain Monte Carlo chains to derive the posterior distributions. On the other hand, once properly trained, an amortized SBI-NPE network generates the posterior distributions in no time (less than 1 second per spectrum on a 6-core laptop). We show that SBI-NPE is less sensitive to local minima trapping than standard fit statistic minimization techniques. With a simple model, we find that the neural network can be trained equally well on dimension-reduced spectra via a principal component decomposition, leading to a faster inference time with no significant degradation of the posteriors. Conclusions. We show that simulation-based inference with neural posterior estimation is a complementary tool for X-ray spectral analysis. The technique is robust and produces well-calibrated posterior distributions. It holds great potential for its integration in pipelines developed for processing large data sets. The code developed to demonstrate the first working principles of the technique introduced here is released through a Python package called SIXSA (Simulation-based Inference for X-ray Spectral Analysis), which is available from GitHub.

Publisher

EDP Sciences

Reference46 articles.

1. Abadi M., Agarwal A., Barham P., et al. 2016, arXiv e-prints [arXiv:1603.04467]

2. The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

3. Bevington P., & Robinson D. 2003, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill Education)

4. Bradbury J., Frostig R., Hawkins P., et al. 2018, http://github.com/google/jax

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3