The colliding-wind binary HD 168112

Author:

Blomme R.ORCID,Rauw G.ORCID,Volpi D.,Nazé Y.ORCID,Abdul-Masih M.ORCID

Abstract

Context. Radio surveys of early-type stars have revealed a number of non-thermal emitters. Most of these have been shown to be binaries, where the collision between the two stellar winds is responsible for the non-thermal emission. Aims. HD 168112 is a non-thermal radio emitter, whose binary nature has only recently been confirmed spectroscopically. We obtained independent spectroscopic observations to determine its orbit, in addition to radio observations to see if the thermal or non-thermal nature of the emission changes during the periastron passage. Methods. We monitored HD 168112 spectroscopically for a 13 yr time span. From these data, we determined the orbital parameters, which we compared to the previous results in the literature. The stellar parameters of both components were determined by comparing the spectra to TLUSTY models. From the spectral index of the radio observations, we found how the nature of the emission changes as the system goes through periastron. Combining our results with other literature data allowed us to further constrain the orbital and stellar parameters. Results. We find HD 168112 to have an orbital period of P = 512.17−0.11+0.41 days, an eccentricity of e = 0.7533−0.0124+0.0053, and a mass ratio close to one. From our spectroscopic modelling, we derived the stellar parameters, but we had difficulty arriving at a spectroscopic mass ratio of one. The radio observations around periastron show only thermal emission, suggesting that most of the synchrotron photons are absorbed in the two stellar winds at that phase. Combining our data with the optical interferometry detection, we could constrain the inclination angle to i ~ 63°, and the mass of each component to ~26 M. Conclusions. We have provided an independent spectroscopic confirmation of the binary nature of HD 168112. Although detected as a non-thermal radio emitter, near periastron the radio emission of this highly eccentric system is thermal and is mainly formed in the colliding-wind region. This effect will also occur in other colliding-wind binaries.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3