Proton polytropic behavior of periodic density structures in the solar wind

Author:

Katsavrias C.ORCID,Nicolaou G.,Di Matteo S.ORCID,Kepko L.,Viall N. M.,Aminalragia-Giamini S.ORCID,Livadiotis G.

Abstract

Context. In recent years, mesoscales have gained scientific interest because they have been determined to be important in a broad range of phenomena throughout heliophysics. The solar wind mesoscale structures include periodic density structures (PDSs), which are quasi-periodic increases in the density of the solar wind that range from a few minutes to a few hours. These structures have been extensively observed in remote-sensing observations of the solar corona and in in situ observations out to 1 AU, where they manifest as radial length scales greater than or equal to the size of the Earth’s dayside magnetosphere, that is, from tens to hundreds of Earth radii (RE). While the precise mechanisms that form PDSs are still debated, recent studies confirmed that most PDSs are of solar origin and do not form through dynamics during their propagation in the interplanetary space. Aims. We further investigate the origin of PDSs by exploring the thermodynamic signature of these structures. To do this, we estimate the values of the effective polytropic index (Y) and the entropy of protons, which in turn are compared with the corresponding values found for the solar wind. Methods. We used an extensive list of PDS events spanning more than two solar cycles of Wind measurements (the entire Wind dataset from 1995 to 2022) to investigate the thermodynamic signatures of PDSs. With the use of wavelet methods, we classified these PDSs as coherent or incoherent, based on the shared periodic behavior between proton density and alpha-to-proton ratio, and we derive the proton polytropic index. Results. Our results indicate that the coherent PDSs exhibit lower Y values (≈1.54) on average and a higher entropy than the values in the entire Wind dataset (≈1.79), but also exhibit similarities with the magnetic cloud of an interplanetary coronal mass ejection. In contrast, incoherent PDSs exhibit the same Y values as those of the entire Wind dataset.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3