The SRG/eROSITA All-Sky Survey

Author:

Migkas K.ORCID,Kox D.ORCID,Schellenberger G.ORCID,Veronica A.ORCID,Pacaud F.ORCID,Reiprich T. H.ORCID,Bahar Y. E.ORCID,Balzer F.,Bulbul E.ORCID,Comparat J.ORCID,Dennerl K.ORCID,Freyberg M.ORCID,Garrel C.ORCID,Ghirardini V.ORCID,Grandis S.ORCID,Kluge M.ORCID,Liu A.ORCID,Ramos-Ceja M. E.ORCID,Sanders J.ORCID,Zhang X.ORCID

Abstract

Galaxy cluster gas temperatures (T) play a crucial role in many cosmological and astrophysical studies. However, it has been shown that T measurements can significantly vary between different X-ray telescopes. These T biases can propagate to several cluster applications in which T can be used, such as measuring hydrostatic cluster masses and constraining the angular variation of cosmological parameters. Thus, it is important to accurately cross-calibrate X-ray instruments to account for systematic biases. In this work, we present the cross-calibration between Spectrum Roentgen Gamma/eROSITA (SRG/eROSITA) and Chandra/ACIS and between SRG/eROSITA and XMM-Newton/EPIC using for the first time a large sample of galaxy cluster T. To do so, we used the first eROSITA All-Sky Survey data and the preliminary extremely expanded HIgh FLUx Galaxy Cluster Sample, a large X-ray flux-limited cluster catalog. We spectroscopically measured X-ray T for 186 independent cluster regions with both SRG/eROSITA and Chandra/ACIS in a self-consistent way for three energy bands: 0.7–7 keV (full), 0.5–4 keV (soft), and 1.5–7 keV (hard). We did the same with SRG/eROSITA and XMM-Newton/EPIC for 71 different cluster regions and all three bands. We find that SRG/eROSITA measures systematically lower T than the other two instruments, with hotter clusters deviating more than cooler ones. For the full band, SRG/eROSITA returns 20% and 14% lower T than Chandra/ACIS and XMM-Newton/EPIC, respectively, when the two other instruments each measure kBT ≈ 3 keV. The discrepancy respectively increases to 38% and 32% when Chandra/ACIS and XMM-Newton/EPIC each measure kBT ≈ 10 keV. On the other hand, the discrepancy becomes milder for low-T galaxy groups. Moreover, a broken power law fit demonstrated that there is a break at the SRG/eROSITA-Chandra/ACIS scaling relation at kBT ≈ 1.7 − 2.7 keV, depending on the energy band. The soft band shows a marginally lower discrepancy compared to the full band. In the hard band, the cross-calibration of SRG/eROSITA and the other instruments show very strong differences. We tested several possible systematic biases (such as multiphase cluster gas, Galactic absorption, non-Gaussian scatter, and selection effects) to identify the reason behind the cross-calibration discrepancies, but none could significantly alleviate the tension. For now, it is most likely that the systematically lower SRG/eROSITA T can be attributed to systematic effective area calibration uncertainties; however, the exact role of multiphase cluster gas in the observed T discrepancies needs to be further investigated. Furthermore, we provide conversion factors between SRG/eROSITA, Chandra/ACIS, and XMM-Newton/EPIC T that will be beneficial for future cluster studies that combine SRG/eROSITA T with data from other X-ray instruments. Finally, we also provide conversion functions between the official eRASS1 cluster catalog T and the equivalent core and core-excised Chandra/ACIS and XMM-Newton/EPIC T.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3