The strongest cool core in REXCESS: Missing X-ray cavities in RXC J2014.8–2430

Author:

Mroczkowski TonyORCID,Donahue Megan,van Marrewijk Joshiwa,Clarke Tracy E.ORCID,Hoffer Aaron,Intema HuibORCID,Di Mascolo LucaORCID,Popping GergöORCID,Pratt Gabriel W.,Sun MingORCID,Voit Mark

Abstract

We present a broad, multi-wavelength study of RXC J2014.8−2430, the most extreme cool-core cluster in the Representative XMM-Newton Cluster Structure Survey (REXCESS), using Chandra X-ray, Southern Astrophysical Research (SOAR) Telescope spectroscopic and narrow-band imaging, Atacama Large Millimeter/submillimeter Array (ALMA), Very Large Array, and Giant Metrewave Radio Telescope observations. While feedback from an active galactic nucleus (AGN) is thought to be the dominant mechanism by which a cooling flow is suppressed, the Chandra imaging observations surprisingly do not reveal the bi-lateral X-ray cavities one might expect to see in the intracluster medium (ICM) of an extreme cool core hosting a powerful radio source, though cavities commonly appear in many similar sources. We discuss the limits on the properties of putative radio bubbles associated with any undetected X-ray cavities. We place upper limits on any significant X-ray AGN in the brightest cluster galaxy (BCG) and show that the X-ray peak is offset from the central radio source, which exhibits a steep low-frequency radio spectrum indicative of electron ageing. The imaging and spectroscopy provided by SOAR reveal an extended, luminous optical emission-line source. From our narrow-band Hα imaging of the BCG, the central Hα peak is coincident with the radio observations, yet offset from the X-ray peak, consistent with sloshing found previously in this cluster. ALMA observations of the CO(1−0) emission reveal a large reservoir of molecular gas that traces the extended Hα emission in the direction of the cool core. We conclude either that the radio source and its cavities in the X-ray gas are nearly aligned along the line of sight, or that ram pressure induced by sloshing has significantly displaced the cool molecular gas feeding it, perhaps preempting the AGN feedback cycle. We argue that the sloshing near the core is likely subsonic, as expected, given the co-location of the Hα, CO(1−0), radio continuum, and stellar emission peaks and their proximity to the X-ray peak. Further, the X-ray emission from the core is strongly concentrated, as is the distribution of metals, indicating the cool core remains largely intact. Deeper Chandra observations will be crucial for definitively establishing the presence or lack of X-ray cavities, while X-ray micro-calorimetric observations from Athena could establish if the motion of the cold and warm gas is dominated by large-scale motions of the surrounding ICM.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference118 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3