Physical characterization of recently discovered globular clusters in the Sagittarius dwarf spheroidal galaxy

Author:

Garro E. R.ORCID,Minniti D.ORCID,Gómez M.ORCID,Alonso-García J.ORCID

Abstract

Context. Globular clusters (GCs) are important tools for rebuilding the accretion history of a galaxy. In particular, newly discovered GCs in the Sagittarius (Sgr) dwarf galaxy can be used as probes of the accretion event onto the Milky Way (MW). Aims. Our main aim is to characterize the GC system of the Sgr dwarf galaxy by measuring its main physical parameters. Methods. We built the optical and near-infrared color-magnitude diagrams for 21 new Sgr GCs using the VISTA Variables in the Via Lactea Extended Survey near-infrared database combined with the Gaia Early Data Release 3 optical database. We derived metallicities and ages for all targets using the isochrone-fitting method with PARSEC isochrones. We also used the relation between red giant branch slope and metallicity as an independent method to confirm our metallicity estimates. In addition, the total luminosities were calculated in the near-infrared and in the optical. We then constructed the metallicity distribution (MD), the globular cluster luminosity function (GCLF), and the age-metallicity relation for the Sgr GC system. Results. We find that there are 17 metal-rich GCs with −0.9 < [Fe/H]<  − 0.3, plus 4 metal-poor GCs with −2.0 < [Fe/H]<  − 1.1 in the new Sgr GC sample. The metallicity estimates using isochrones and red giant branch slopes agree well. Even though our age estimates are rough, we find that the metal-poor GCs are consistent with an old population with an average age of ∼13 Gyr, while the metal-rich GCs show a wider age range, between 6 − 8 Gyr and 10 − 13 Gyr. Additionally, we compare the MD and the GCLF for the Sgr GC system with those of the MW, M31, and Large Magellanic Cloud galaxies. Conclusions. We conclude that the majority of the metal-rich GCs are located within the main body of the Sgr galaxy. We confirm that the GCLF is not a universal distribution because the Sgr GCLF peaks at fainter luminosities (MV ≈ −5.5 mag) than the GCLFs of the MW, M31, and Large Magellanic Cloud. Moreover, the MD shows a double-peaked distribution, and we note that the metal-rich population looks like the MW bulge GCs. We compared our results with the literature and conclude that the Sgr progenitor could have been a reasonably large galaxy able to retain the supernovae ejecta, thus enriching its interstellar medium.

Funder

ESO Public Survey program

UNAB PhD scholarship

ANID PhD scholarship

the BASAL Center for Astrophysics and Associated Technologies

Fondecyt Regular

ANID – Millennium Science Initiative Program

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3