A missing link in the nitrogen-rich organic chain on Titan

Author:

Carrasco N.ORCID,Bourgalais J.,Vettier L.ORCID,Pernot P.ORCID,Giner E.,Spezia R.

Abstract

Context.The chemical building blocks of life contain a large proportion of nitrogen, an essential element. Titan, the largest moon of Saturn, with its dense atmosphere of molecular nitrogen and methane, offers an exceptional opportunity to explore how this element is incorporated into carbon chains through atmospheric chemistry in our Solar System. A brownish dense haze is consistently produced in the atmosphere and accumulates on the surface on the moon. This solid material is nitrogen-rich and may contain prebiotic molecules carrying nitrogen.Aims.To date, our knowledge of the processes leading to the incorporation of nitrogen into organic chains has been rather limited. In the present work, we investigate the formation of nitrogen-bearing ions in an experiment simulating Titan’s upper atmosphere, with strong implications for the incorporation of nitrogen into organic matter on Titan.Methods.By combining experiments and theoretical calculations, we show that the abundant N2+ion, produced at high altitude by extreme-ultraviolet solar radiation, is able to form nitrogen-rich organic species.Results.An unexpected and important formation of CH3N2+and CH2N2+diazo-ions is experimentally observed when exposing a gas mixture composed of molecular nitrogen and methane to extreme-ultraviolet radiation. Our theoretical calculations show that these diazo-ions are mainly produced by the reaction of N2+with CH3radicals. These small nitrogen-rich diazo-ions, with a N/C ratio of two, appear to be a missing link that could explain the high nitrogen content in Titan’s organic matter. More generally, this work highlights the importance of reactions between ions and radicals, which have rarely been studied thus far, opening up new perspectives in astrochemistry.

Funder

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3