X-ray-inferred kinematics of the core intracluster medium in Perseus-like clusters: Insights from the TNG-Cluster simulation

Author:

Truong NhutORCID,Pillepich AnnalisaORCID,Nelson DylanORCID,Zhuravleva Irina,Lee WonkiORCID,Ayromlou MohammadrezaORCID,Lehle KatrinORCID

Abstract

The intracluster medium (ICM) of galaxy clusters encodes the impact of the physical processes that shape these massive halos, including feedback from central supermassive black holes (SMBHs). In this study, we examine the gas thermodynamics, kinematics, and the effects of SMBH feedback on the core of Perseus-like galaxy clusters with a new simulation suite: TNG-Cluster. We first make a selection of simulated clusters similar to Perseus based on the total mass and inner ICM properties, such as their cool-core nature. We identify 30 Perseus-like systems among the 352 TNG-Cluster halos at z = 0. Many exhibit thermodynamical profiles and X-ray morphologies with disturbed features such as ripples, bubbles, and shock fronts that are qualitatively similar to X-ray observations of Perseus. To study observable gas motions, we generate XRISM mock X-ray observations and conduct a spectral analysis of the synthetic data. In agreement with existing Hitomi measurements, TNG-Cluster predicts subsonic gas turbulence in the central regions of Perseus-like clusters, with a typical line-of-sight velocity dispersion of 200 km s−1. This implies that turbulent pressure contributes < 10% to the dominant thermal pressure. In TNG-Cluster, such low (inferred) values of ICM velocity dispersion coexist with high-velocity outflows and bulk motions of relatively small amounts of super-virial hot gas, moving up to thousands of km s−1. However, detecting these outflows in observations may prove challenging due to their anisotropic nature and projection effects. Driven by SMBH feedback, such outflows are responsible for many morphological disturbances in the X-ray maps of cluster cores. They also increase both the inferred and intrinsic ICM velocity dispersion. This effect is somewhat stronger when velocity dispersion is measured from higher-energy lines.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3