Experimental and ab initio study of the influence of a compound modifier on carbidic ductile iron

Author:

Penghui Yang,Fu Hanguang,Jian Lin,Haiqiang Cheng,Yongping Lei

Abstract

To improve the morphology of carbides in carbidic ductile iron, a compound modifier consisting of 0.1% Nb + 0.1% Ti + 0.1 wt.% Y was added to the base ductile iron with chemical composition of 3.72% C, 2.77% Si, 0.51% Mn, 0.99% Cr and balance Fe (wt.%). The effect of this compound modifier on the microstructures of carbidic ductile iron was studied. Also, first-principles calculations were carried out to better understand the modification mechanisms. The results showed that the maximum diameter of spheroidal graphite nodules decreased from 58 to 34 µm after the addition of compound modifier, and continuous carbide networks changed into a broken network. The roundness of graphite nodules decreased slightly, and the percent nodularity of the graphite nodules and the number of carbides decreased by 3 and 1.8%, respectively. Compounds with higher melting point are formed thanks to the compound modifier which acts as heterogeneous core, and the remaining Ti and Nb elements can be selectively attracted by (010) surface of Fe8Cr4C4. Furthermore, Cr elements can be easily replaced by Ti and Nb in the carbides to form more stable Fe8Cr3TiC4 and Fe8Cr3NbC4, which can prevent the continuing growth of carbide on the Fe8Cr4C4 (010) crystal surface and break the continuous network M3C. Y atoms cannot be directly adsorbed onto Fe8Cr4C4 (010) surfaces. They combine first with oxygen in the ductile iron to form Y2O3. The work of adhesion of the interface between a Y2O3 (100) and a Fe8Cr4C3 (010) is predicted to be 0.3 J/m2. The addition of Y element is found to have a positive effect on breaking up the continuity of the carbide network.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3