DHA (omega-3 fatty acid) increases the action of brain-derived neurotrophic factor (BDNF)

Author:

Majou DidierORCID,Dermenghem Anne-Lise

Abstract

Neurons have high energy needs, requiring a continuous supply of glucose from the blood. Tight regulation of glucose metabolism in response to stimuli is essential for brain physiology. Glucose metabolism and cerebral blood flow are closely coordinated during neuronal activity to maintain proper brain function. In a previous article, we have already detailed the mechanisms by which the PI3K/Akt signaling pathway is involved in the efficiency of glucose uptake by stimulating GLUT-1 action and NO-mediated vasodilation. In this article, we now clarify how the activation of BDNF helps to stimulate the IRS-1/PI3K/Akt signaling pathway and upregulates NMDA receptor activity. In short, high-frequency neuronal activity induces the secretion of BDNF, whose presence boosts this important pathway. DHA, via the PPARα-RXRα and PPARɣ-RXRα heterodimers, is involved in the critical regulation of BDNF activation. As a preferential ligand of PPARs and RXRα, DHA plays an important role in the gene expression of CREB and CPE, and it is involved in the regulation and expression of tPA, as well as the inhibition of PAI-1. BDNF boosts the IGF-1/estradiol/PI3K/Akt signaling pathway, and DHA boosts the action of BDNF.

Publisher

EDP Sciences

Subject

Agronomy and Crop Science,Biochemistry,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3