Wheel slip ratio regulation for investigating the vehicle's dynamic behavior during braking and steering input

Author:

Shahabi Ali,Kazemian Amir Hossein,Farahat SaidORCID,Sarhaddi Faramarz

Abstract

In this study, the vehicle's dynamic behavior during braking and steering input is investigated by considering the quarter-car model. The case study for this research is a Sport-Utility Vehicle (SUV) with the anti-lock braking system (ABS) and nonlinear dynamic equations are considered for it along with Pacejka tire model. Regulating the wheel slip ratio in the optimal value for different conditions of the road surface (dry, wet and icy) during braking is considered as the ABS control strategy. In order to regulating the wheel slip ratio in the optimal value, an intelligent adaptive fuzzy controller that can perform online parameter estimation is considered. In this regard, the proposed controller tracks the optimal wheel slip ratio with changing the condition of the road surface from dry to wet and icy. The adaptive fuzzy controller consists of linguistic base, inference engine and defuzzifier section. The wheel slip ratio and vehicle longitudinal acceleration are selected as inputs of the controller, controller adapter and detector of the road surface condition. During braking and steering input, effective parameters of the wheel that are affected on the vehicle's dynamic behavior and its stability are investigated.

Publisher

EDP Sciences

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Global Sliding Mode Control of Anti-Lock Braking System Using Optimization Algorithms;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

2. A Study on the Vehicle Antilock System Based on Adaptive Neural Network Sliding Mode Control;Mathematical Problems in Engineering;2024-03-11

3. Voltage-Based Braking Controls for Electric Vehicles Considering Weather Condition and Road Slope;Applied Sciences;2023-12-16

4. Research on electric power steering fuzzy PI control strategy based on phase compensation;International Journal of Dynamics and Control;2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3