Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow

Author:

Singh Jashanpreet,Singh Jatinder Pal,Singh Mandeep,Szala Miroslaw

Abstract

Present work is devoted to investigation of the slurry erosion wear in a 90° elbow by using commercial Computational fluid dynamics (CFD) code FLUENT. Discrete phase erosion wear model was used to predict erosion in 90° elbow by solving the governing equations through Euler-Lagrange scheme. Particle tracking was considered by using standard k-ε turbulence scheme for the flow of bottom ash slurry. Erosion wear in elbow was investigated along with velocity distribution and turbulence intensity. The radius-to-diameter (r/D) ratio was taken as 1.5. Results show that erosion rate increases with increase in velocity. Present numerical simulation model holds close agreement with previous studies. Distorted patterns appeared at low velocities. The V-shape pattern appeared on the outer wall of elbow at high velocities. The low velocity region occurs around circumference of elbow wall at outer wall of elbow due to stimulation of the drag forces near the wall region.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review on the flow characteristics and erosion wear of the various multi-phase flow handling equipment;Particulate Science and Technology;2024-05-09

2. Computational analysis of erosion wear on unbounded flexible pipe of different curvature angles;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-04-24

3. Experimental studies on the behavior of the fiber reinforced concrete blended with admixtures;AIP Conference Proceedings;2024

4. Neural computing for erosion assessment in Al-20TiO2 HVOF thermal spray coating;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-23

5. Neural computing of slurry erosion of Al2O3-13TiO2 thermal spray HVOF coating for mining pump;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3