Can Multifunctionality of Bioresorbable BMGs be Tuned by Controlling Crystallinity?

Author:

Yang Shang Mou1,Hufenbach Julia2ORCID,Scudino Sergio2,Conway Paul P.1,Torres-Sanchez Carmen1

Affiliation:

1. Loughborough University

2. Leibniz IFW Dresden

Abstract

Ca-Mg-Zn bulk metallic glasses (BMGs) are promising biomaterials for orthopaedic applications because when they get reabsorbed, a retrieval surgery is not needed. In this study, Ca-Mg-Zn metallic glasses with different compositions, Ca56.02Mg20.26Zn23.72 and Zn50.72Mg23.44Ca25.84, were fabricated by induction melting followed by copper mould casting. Their degree of crystallinity was modified by annealing, obtaining exemplar specimens of fully amorphous, partially amorphous (i.e., a BMG composite (BMGC)) and fully crystalline alloys. The microstructure, thermodynamic and corrosion performance of these alloys were evaluated as well as their electrochemical behaviour. The results of polarisation tests demonstrate that the corrosion resistance of the Zn-rich alloy is markedly better than the Ca-rich BMG. Corrosion rates of these Ca-and Zn-rich alloys with different degrees of crystallinity illustrate that the corrosion behaviours of alloys strongly depend on their microstructure, which shows a positive correlation between the corrosion current density and the crystallised volume fraction of the alloy. This study aims to shed light on the impact of the amorphicity-to-crystallinity ratio on the multifunctional properties of BMGs/BMGCs, and to assess how feasible it is to fine-tune those properties by controlling the percentage of crystallinity.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3