Effect of ZnO Nanoparticles Salt Precursors on Structural, Morphological, Optical and MB Photocatalytic Properties Using Hydrothermal Synthesis

Author:

Bahtoun Hicham1,Hadjeris Lazhar1,Iaiche Sabrina2,Ounis Tarek Diab3

Affiliation:

1. Larbi Ben M’Hidi University

2. University of Abbes Laghrour

3. Larbi Ben Mhidi University

Abstract

ZnO nanoparticles were successfully produced via a simple low cost hydrothermal method using different metal precursors. Zn (CH3COO)2), (Zn (NO3)2) and (ZnCl2) were the source materials. The obtained nanoparticles were investigated by means XRD, SEM and DRS. The XRD exhibited the high crystallinity of the pure ZnO phase with hexagonal wurtzite crystalline structure for all simples excepted for ZnO synthetized from ZnCl2 precursor. The crystallite sizes was estimated in the range of 20-37 nm. The precursor type do not affect the Eg of the nanoparticles. The bandgaps energies were between 3.21-3.22 eV. The type of precursor affect the particles morphology. SEM images revealed different morphologies. The photocatalytic activity of the synthetized ZnO NPs in comparison with that of commercial powder for the methylene blue (MB) degradation under UV irradiation, showed the appropriate activity of nanostructures obtained by Zn (NO3)2 and Zn (CH3COO)2 precursors. The first-order kinetic constant over ZnO from Zn (NO3)2 was 1.9, 3.7 and 1.5 times of ZnO commercial powder, ZnO from ZnCl2 and Zn (CH3COO)2, respectively. The ZnO NPs from Zn (NO3)2 and Zn (CH3COO)2 precursors have the best photocatalytic degradation performance with a degradation rate of 99.3% and 96.4%, respectively. The higher photocatalytic performance was probably due to the larger crystallinity, purity phase and specific morphologies than smaller particle size effect. Thus, the synthetized ZnO nanoparticles by the soft hydrothermal process are a promising candidate for the photocatalytic purposes of dyes from waters.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3