Effect of Crushed Brick on some Properties of Modified Reactive Powder Concrete

Author:

Saeed Rosul Hussein1,Aljalawi Nada Mahdi Fawzi1

Affiliation:

1. University of Baghdad

Abstract

Abstract. Much trash, similar to clay bricks, concrete, and mortar, is made when things are built or torn down. A cheap and eco-friendly way to eliminate this trash is to recycle it into new building materials. Construction and removal waste is turned into recycled aggregates after being smashed, ground, dried, and graded. This paper shows the findings of a study that looked into using crushed bricks as aggregates. The bricks were taken from the demolition of different places and then crushed until they were no bigger than 10 mm. Micro steel fibres (1% by volume of the concrete) and crushed bricks (25% and 50%) of the original reactive powder concrete were added to the mix instead of fine sand and micro steel fibres before the casting. To look into several properties of the standard and reactive powder concrete, including their density, compressive strength , and Flexural strength . compressive strength of modified reactive powder concrete ( MRPC) with 25% crushed bricks increased by 7.22% and 6.73% more than compressive strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively and Flexural strength increasing by 33.96%and 27.6% more than Flexural strength of the standard reactive powder concrete at age 7 days and 28 days of testing respectively . The compressive strength slightly decreasing by 8.43% and 7.69% at age 7 days and 28 days of testing respectively when 50% crushed bricks were used instead sand and Flexural strength decreasing by 16.03% and 14.92% less than reference mixture when 50% crushed brick incorporated. Moreover, modified reactive powder concrete was less dense than the reactive powder concrete that was first made.

Publisher

Trans Tech Publications Ltd

Reference26 articles.

1. Behavior of reactive powder concrete containing recycled glass powder reinforced by steel fiber;Hussain;Journal of the Mechanical Behavior of Materials,2022

2. Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review;Abdullah;Journal of Engineering,2021

3. F. M. Torgal and S. Jalali, "Resistência mecânica e durabilidade de betões modificados com polímeros," Rev. Eng. Civ. da Univ. do Minho, 2009.

4. Effect of Sustainable Glass Powder on the Properties of Reactive Powder Concrete with Polypropylene Fibers;Ali Hussain;Engineering, Technology & Applied Science Research,2022

5. The Effect of Chemicalattack of some Organic Acidic Solutions to Self Compacting Concrete (SCC);Al Khafaji;Advanced Materials Research,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3