Application of Combustion Synthesis to the Production of Actinide Bearing Nitride Ceramic Nuclear Fuels

Author:

Reigel M.1,Donohoue C.1,Burkes Douglas2,Moore John J.1,Kennedy J.R.2

Affiliation:

1. Colorado School of Mines

2. Idaho National Laboratory

Abstract

Self-propagating high temperature (combustion) synthesis (SHS) is being used to develop several synthesis and processing routes for the next generation of ceramic nuclear fuels. These fuels are based on an actinide nitride within an inert matrix. The application of SHS is particularly important in the synthesis of americium (Am) based ceramics; since the rapid heating and cooling cycles used in this process will help to minimize vaporization loss of Am, which is a major problem in synthesizing Am-based ceramics. Manganese, praseodymium, and dysprosium are being used as physical and chemical surrogates for various actinides. Actinide nitride powders produced using auto-ignition combustion synthesis (AICS) are subsequently reacted with zirconium powder using SHS to produce a final fuel pellet. This paper will discuss the research to date on the synthesis of Am-N powders as well as the production of dense Zr-Am-N pellets as a model ceramic fuel system.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3