Abstract
The drawing textures of aluminum, copper, gold, silver, and Cu-7.3% Al bronze wires are approximated by major <111>+minor <100>, except silver wire, which can have the <100> texture at extremely high reductions. The <111> component in the drawing textures of aluminum, copper, gold, and silver transform to the <100> component after recrystallization. On the other hand, the <111> deformation texture of the Cu-7.3% Al bronze wire, which has very low stackingfault- energy, remains unchanged after recrystallization. The <100> + <111> recrystallization textures change to the <111> texture after abnormal grain growth. The Brass component {110}<112> in rolling textures of high stacking-fault-energy metals such as aluminum, copper, Cu- 16% Mn, and Cu-1% P changes to the Goss orientation {110}<001> after recrystallization. However, the Brass orientation in rolling textures of low stacking-fault-energy fcc metals such as brass and silver appears to change to an orientation approximated by the {236}<385> orientation after annealing. The texture changes are discussed based on the strain-energy-release-maximization model for medium to high stacking-fault-energy metals and on grain growth for low stacking-fault energy metals.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献