Dry Sliding Wear and High-Velocity Impact Behaviour of Spark Plasma Sintered Ti-Ni Binary Alloys

Author:

Rominiyi Azeez Lawan1,Shongwe Mxolisi Brendon1,Ogunmuyiwa Enoch Nifise2,Jeje Samson Olaitan1,Salifu Smith1,Adesina Olanrewaju Seun3,Olubambi Peter Apata4

Affiliation:

1. Tshwane University of Technology

2. Botswana International University of Science and Technology

3. Landmark University

4. University of Johannesburg

Abstract

This work investigated the dry sliding wear behaviour of spark plasma sintered (SPSed) Ti-Ni binary alloys produced at varying nickel content with alloy steel ball as the counterface material, at room temperature under varied applied normal loads. Finite element modeling was used to investigate the high-velocity impact response of the sintered alloys due to the dimensional constraint associated with SPSed samples. Microstructural analysis results revealed the presence of intermetallic phases of Ti-Ni with increasing nickel content. The best wear resistance ranging from 0.25 x 10-3 mm3/Nm to 0.22 x 10-3 mm3/Nm across all applied loads was obtained in Ti-6Ni alloy. This was attributed to the compaction of the protective triboxide and carbide layers on the surface of the sample. Oxidative and wear by adhesion were observed at low applied normal load while at high loads the prevalent wear mechanism was abrasive with reduced influence of oxidative and adhesive wear. Finite element analysis results also showed that Ti-6Ni alloy possessed the optimum combination of absorbed energy and ductility to reduce the possibility of brittle failure under impact loading. Keywords: Ti-Ni binary alloys; Spark plasma sintering; Dry sliding wear; High-velocity impact; Finite element analysis.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3