Optimization of Poly(phenylene sulfoxide ether sulfide ether) Synthesis by Response Surface Methodology

Author:

Gu Ai Qun1,Li Zuo Cai2,Liu Shu Ling1,Fu Cong Li1,Yu Zi Li1

Affiliation:

1. Sichuan University

2. Sichuan Entry-Exit Inspection and Quarantine Bureau

Abstract

To increase the molecular weight of poly (phenylene sulfide ether) (PPSE), a novel route has been developed via the reduction of poly (phenylene sulfoxide ether sulfide ether) (PPSOESE) precursor. The synthesis of high molecular weight PPSOESE is essential for the ultimate purpose. Effects of process parameters on preparation of PPSOESE were firstly investigated and the optimization was performed by response surface methodology (RSM). Average number molecular weight (Mn) and Yield of PPSOESE were defined as the experimental responses. The statistical analyses indicate that the most significant factor is monomer concentration, followed by reaction temperature and the interaction of reaction temperature • monomer concentration. Under optimal conditions, the and Yield responses were obtained as 1.78 ×104±1.02 % and 93.6±1.3 %, which are in agreement with the predicted values of 1.80 ×104and 95.4 %, respectively. Structure of PPSOESE was also characterized. The highest intrinsic viscosity and yield of PPSE by the reduction of PPSOESE reached to 0.78 dL/g and 93.2%, respectively, much greater than the reported results. The work is helpful for forthcoming preparation and study of high molecular weight PPSE.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3