Identifying Seismic Local Collapse Mechanisms in Unreinforced Masonry Buildings through 3D Laser Scanning

Author:

Andreotti Chiara1,Liberatore Domenico1,Sorrentino Luigi1ORCID

Affiliation:

1. Sapienza - University of Rome

Abstract

The surveys following severe earthquakes show that existing unreinforced masonry buildings are highly vulnerable to local collapse mechanisms. However, their assessment is strongly sensitive to the choice of the mechanism, whose boundary conditions are largely unknown. In the past the mechanism has been selected based on the crack survey alone, because the survey of the deformations is very difficult if traditional tools are used. In the last years advanced survey techniques have been developed, the most powerful of whom resorts to laser scanning. A laser scanner allows the acquisitions of a very large amount of information: building overall dimensions and single elements detailed survey, detection of anomalies, and identification of very limited deformations undetectable with the naked eye. Moreover, contrary to traditional procedures, it allows the survey of the façades without any direct contact with the building, which could be damaged after an earthquake. A laser-scanner survey has been performed in the whole historical centre of Rovere, in the municipality of Rocca di Mezzo, affected by the 2009 L’Aquila earthquake. This survey has been used to study the façades of three different building units, recognising the collapse mechanism triggered by the earthquake ground motion. The mechanisms are fairly different from what suggested by the crack pattern alone and pertain to deformations that cannot be recognised in the photos. Moreover, the faithful geometric models that can be generated from laser scanning allow accounting for deformations and out-of-plumb. Thus, the acceleration activating the mechanism can be estimated much more accurately compared to a perfectly vertical and parallelepiped wall.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3