Affiliation:
1. Institute of Engineering & Management
Abstract
Copper nanofilms are extensively used in the field of material science research. Nanoparticles and nanostructures of copper have various utilities in the field of photocatalytic and sensor applications. The transition metal nanoparticles and nanostructures supply plenty free electrons which drastically enhances the optical and electrical properties compared to bulk material. Here, copper thin films have been deposited on glass slides and silicon substrates using an indigenously developed DC magnetron sputtering system. These depositions have been carried out at three different time spans keeping the magnetron discharge current, working vacuum and target to substrate distance unaltered. The objective of this work is to study the crystalline structure and measure the thickness of the copper nanofilm deposited at three different times. The synthesized films were characterized by using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Secondary Ion Mass Spectrometer (SIMS). Characteristic peaks of copper (111) along with Cu2O (110), (220) and (111) were obtained from the XRD pattern. The average grain size of the deposited films has been calculated using Debye-Scherrer equation. The film thickness ranging from 80-160 nm for various time spans were measured from depth profile analysis using SIMS data.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献