Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications

Author:

Khansumled Sirikarn1,Boonphayak Piyanan1

Affiliation:

1. Naresuan University

Abstract

Polymethyl methacrylate (PMMA) is a polymer that is a suitable biomaterial for applications such as bone cement and replacement hip joints because it is inert, non-toxic, and has good mechanical properties. Hydroxyapatite (HA) is among the most thoroughly investigated bioceramics because its composition is similar to that of human bone and it has excellent biocompatibility and osteoconductive properties. Moreover, HA can be modified to regulate its physiochemical properties. In this study, boron and strontium were co-substituted into HA (SrBHA) to improve its biological characteristics. Previous studies have shown that strontium can increase bone density, although it negatively affects bone production. Moreover, boron helps to regulate the calcium balance to prevent bone loss. PMMA/SrBHA composites were prepared with different concentrations of SrBHA powder and the effects on the mechanical properties of the composites were investigated. The composites were fabricated using twin-screw extruders and compressed into test specimens using compression molding machinery. When the SrBHA powder concentration was <10 phr, the SrBHA particles were uniformly dispersed throughout the composite via a continuous polymer matrix reaction. Moreover, this concentration produced the greatest increase in compressive strength compared to the sample with no SrBHA (127.4 MPa). The composites were analyzed using energy-dispersive X-ray analysis, Fourier-transform infrared spectroscopy, and X-ray diffraction to determine the dispersion of the reinforced nanoparticles. Scanning electron microscopy (SEM) was used to analyze the dispersion of the SrBHA powder inside the matrix and to determine the causes of the fractures. The SrBHA powder improved the mechanical properties of PMMA, which is critical for applications in biomedical components. The mechanical tests and SEM analysis indicated that PMMA/SrBHA composites could be used for replacement joints and orthopedic implants.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3