EFFICIENCY OF AN UPFLOW ANAEROBIC FILTER FOR POULTRY EFFLUENT TREATMENT

Author:

Beristain-López BetzabelORCID,Sosa-Villalobos Cinthya AlejandraORCID,Partida-Sedas Salvador,Galaviz-Villa ItzelORCID

Abstract

Poultry slaughterhouses discharge large quantities of effluents that can be treated biologically. The objective of this study was to evaluate the chemical oxygen demand (COD) removal efficiency of an upflow anaerobic filter (UAF) with effluents from a poultry slaughterhouse, using volcanic stone (tezontle) as a support medium. Effluent characterization was carried out in accordance with Mexican official standards and standard methods. The support medium was inoculated with activated sludge from an urban wastewater treatment plant. The filter was operated in continuous flow with applied volumetric loads (AVL) of 1, 1.5, 2, 2.5, and 3 kg COD m-3 d-1 and hydraulic retention times (HRT) of 5.8, 3.8, 2.9, 2.3, and 1.9 days. An analysis of variance (ANOVA) was performed, and significant differences were determined for each AVL using the Krustall-Wallis method. The results obtained in the gradually applied AVL were 26.1, 53.2, 40.1, 17, and 49.7 % COD removal. However, in the AVL of 2 and 2.5 kg COD m-3 d-1, there was a decrease in the removal, which is attributed to the destabilization of the system due to the increase in loads. The maximum methane production was 125 mL at an AVL of 3 kg COD m-3 d-1, with a methane yield (YCH4) of 0.082 LCH4 g-1 COD-1rem. With no increase in methane production at each AVL, the theoretical yield of 0.328 LCH4 g-1 COD-1rem. was not met. The upflow anaerobic filter demonstrated its efficiency with a poultry effluent, with maximum COD removal greater than 50 %; however, more acclimatization time is required for the formation of biofilm in the support medium, a pretreatment that removes the high organic load and allows for gradual biogas production.  

Publisher

Colegio de Postgraduados

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3