Microbial Treatment and Oxidative Stress in Agricultural Plants

Author:

Milentyeva Irina1,Fotina Natalya1,Zharko Maria2,Proskuryakova Larisa1

Affiliation:

1. Kemerovo State University

2. All-Russian Dairy Research Institute

Abstract

Anthropogenic factors expose agricultural plants to abiotic and biotic stresses, one of which is oxidative stress. Oxidative stress changes cell metabolism, as well as inhibits plant growth and development. Microbial treatment is an environmentally safe method of oxidative stress prevention. The research objective was to study the antioxidant activity of microflora native to coal dumps in order to combat the oxidative stress in crops. The study featured microorganisms isolated from technogenically disturbed soils. Pure bacterial cultures were isolated by deep inoculation on beef-extract agar. A set of experiments made it possible to define the cultural, morphological, and biochemical properties of cell walls. The antioxidant activity and the amount of indole-3-acetic acid were determined on a spectrophotometer using the ABTS reagent and the Salkowski reagent, respectively. The isolated microorganisms were identified on a Vitek 2 Compact device. The biocompatibility of strains was tested by dripping, while the increase in biomass was measured using a spectrophotometer. The study revealed ten microbial strains with antioxidant activity ranging from 67.21 ± 3.08 to 91.05 ± 4.17%. The amount of indole-3-acetic acid varied from 8.91 ± 0.32 to 15.24 ± 0.69 mg/mL. The list of microorganisms included Klebsiella oxytoca, Enterobacter aerogenes, Pseudomonas putida, and Bacillus megaterium. The consortium of P. putida and E. aerogenes demonstrated the best results in antioxidant activity, indole-3-acetic acid, and biomass. Its ratio was 2:1 (94.53 ± 4.28%; 15.23 ± 0.56 mg/mL), while the optical density was 0.51 ± 0.02. Extra 2% glycine increased the antioxidant activity by 2.34%, compared to the control. Extra 0.5% L-tryptophan increased the amount of indole-3-acetic acid by 3.12 mg/mL and the antioxidant activity by 2.88%. The research proved the antioxidant activity of strains isolated from microflora native to coal dumps. The consortium of P. putida and E. aerogenes (2:1) demonstrated the best results. Further research will define its ability to reduce oxidative stress in plants.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference43 articles.

1. Fatemi H, Esmaiel Pour B, Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution. 2020;266. https://doi.org/10.1016/j.envpol.2020.114982, Fatemi H, Esmaiel Pour B, Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution. 2020;266. https://doi.org/10.1016/j.envpol.2020.114982

2. Rada AO, Kuznetsov AD. Digital inventory of agricultural land plots in the Kemerovo Region. Foods and Raw Materials. 2022;10(2):206–215. https://doi.org/10.21603/2308-4057-2022-2-529, Rada AO, Kuznetsov AD. Digital inventory of agricultural land plots in the Kemerovo Region. Foods and Raw Materials. 2022;10(2):206–215. https://doi.org/10.21603/2308-4057-2022-2-529

3. Milentyeva IS, Le VM, Kozlova OV, Velichkovich NS, Fedorova AM, Loseva AI, et al. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. Foods and Raw Materials. 2021;9(1):153–163. https://doi.org/10.21603/2308-4057-2021-1-153-163, Milentyeva IS, Le VM, Kozlova OV, Velichkovich NS, Fedorova AM, Loseva AI, et al. Secondary metabolites in in vitro cultures of Siberian medicinal plants: Content, antioxidant properties, and antimicrobial characteristics. Foods and Raw Materials. 2021;9(1):153–163. https://doi.org/10.21603/2308-4057-2021-1-153-163

4. Gu D, Andreev K, Dupre ME. Major trends in population growth around the world. China CDC Weekly. 2021;3(28):604–613. https://doi.org/10.46234/ccdcw2021.160, Gu D, Andreev K, Dupre ME. Major trends in population growth around the world. China CDC Weekly. 2021;3(28):604–613. https://doi.org/10.46234/ccdcw2021.160

5. Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, et al. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules. 2018;113:494–506. https://doi.org/10.1016/j.ijbiomac.2018.02.130, Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, et al. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules. 2018;113:494–506. https://doi.org/10.1016/j.ijbiomac.2018.02.130

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3