Extracting Organic Compounds from Brewer's Spent Grain by Various Methods

Author:

Gribkova Irina1,Kharlamova Larisa1,Sevostianova Elena1,Lazareva Irina1,Zakharov Maxim1,Borisenko Olga1

Affiliation:

1. All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry – Branch of V.M. Gorbatov Federal Research Center for Food System s of RAS

Abstract

Brewer's spent grain is a brewing industry waste product that contains various valuable biologically active substances. However, polymers can complicate their extraction. This article focuses on innovative extraction methods, including sustainable deep processing that destroys the internal structures of plant matrix. The research objective was to review publications on the sustainable brewer's spent grain processing as a source of secondary raw materials and plant matrix organic compounds. The study featured the last 5–10 years of foreign and domestic analytical and technical publications on grain structure and extraction methods. Unlike the traditional acidic, alkaline, and enzymatic methods of grain processing, physical and mechanical methods aim at extracting biogenic peptides, phenolic compounds, and fatty acids. The nature of the processing depends on the type of the extracted compound. Thus, for the extraction of reducing compounds intended for sorption, exposure to high temperatures (≥ 150°C) is the most effective method. A combined treatment with acids or alkalis of the cellulose-lignin complex makes it possible to achieve a 76.2% yield of hemicelluloses. Acid hydrolysis of arabinoxylans is effective at 120–160°C. Alkaline hydrolysis combined with physical treatment makes it possible to reach 60% of arabinoxylans in a mix with phenolic compounds. When extracting nitrogen-containing, phenolic, and lipid compounds, the degree of grinding of the biomaterial and the organic solvent is of great importance. The optimal degree makes it possible to preserve the spatial structure while maintaining a high yield (86%) of organic compounds. Ultrafiltration concentrates the isolated biogenic compound and preserves its activity with a high yield of up to 95%. The analysis proved that the brewer's spent grain processing can be both feasible and environmentally friendly. It produces a high yield of pure organic compounds, e.g., peptides, phenolic compounds, fatty acids, etc.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference125 articles.

1. Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, et al. Feed nutritional value of brewers’ spent grain residue resulting from protease aided protein removal. Journal of Animal Science and Biotechnology. 2019;10(1). https://doi.org/10.1186/s40104-019-0382-1, Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, et al. Feed nutritional value of brewers’ spent grain residue resulting from protease aided protein removal. Journal of Animal Science and Biotechnology. 2019;10(1). https://doi.org/10.1186/s40104-019-0382-1

2. Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019, Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019

3. Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing. 2016;122(4):553–568. https://doi.org/10.1002/jib.363, Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing. 2016;122(4):553–568. https://doi.org/10.1002/jib.363

4. Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, et al. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01831, Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, et al. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01831

5. Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, Del Nozal MJ. Variability of brewer’s spent grain within a brewery. Food Chemistry. 2003;80(1):17–21. https://doi.org/10.1016/S0308-8146(02)00229-7, Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, Del Nozal MJ. Variability of brewer’s spent grain within a brewery. Food Chemistry. 2003;80(1):17–21. https://doi.org/10.1016/S0308-8146(02)00229-7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3