Deregulated MicroRNAs Identified in Isolated Glioblastoma Stem Cells: An Overview

Author:

Chua Pei-Ming12,Ma Hsin-I3,Chen Li-Hsin4,Chen Ming-Teh56,Huang Pin-I57,Lin Shinn-Zong2,Chiou Shih-Hwa457

Affiliation:

1. Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan, ROC

2. Center for Neuropsychiatry and Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan, ROC

3. Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC

4. Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC

5. School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC

6. Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC

7. Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC

Abstract

Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, is extremely resistant to current treatment paradigms and has a high rate of tumor recurrence. Recent progress in the field of tumor-initiating cells suggests that GBM stem cells (GBMSCs) may be responsible for tumor progression, resistance to treatment, and tumor relapse. Therefore, understanding the biologically significant pathways involved in modulating GBMSC-specific characteristics offers great promise for development of novel therapeutics, which may improve therapeutic efficacy and overcome present drug resistance. In addition, targeting deregulated microRNA (miRNA) has arisen as a new therapeutic strategy in treating malignant gliomas. In GBMSCs, miRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, stemness maintenance, migration/invasion, apoptosis, and tumorigenicity. Nevertheless, the latest progress with GBMSCs and subsequent miRNA profiling is limited by the identification and isolation of GBMSCs. In this review, we thus summarize current markers and known features for isolation as well as the aberrant miRNAs that have been identified in GBM and GBMSCs.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3