Collagen IV Significantly Enhances Migration and Transplantation of Embryonic Stem Cells: Involvement of α2β1 Integrin-Mediated Actin Remodeling

Author:

Li Hsin-Yang123,Liao Chen-Yi3,Lee Kun-Hsiung4,Chang Hung-Chi1,Chen Yi-Jen12,Chao Kuan-Chong12,Chang Sheng-Ping12,Cheng Hsin-Yi12,Chang Chia-Ming12,Chang Yuh-Lih56,Hung Shih-Chieh6,Sung Yen-Jen3,Chiou Shih-Hwa56

Affiliation:

1. Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan

2. Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan

3. Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan

4. Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Taiwan

5. Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan

6. Department of Education and Research, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract

Embryonic stem (ES) cell transplantation represents a potential means for the treatment of degenerative diseases and injuries. As appropriate distribution of transplanted ES cells in the host tissue is critical for successful transplantation, the exploration of efficient strategies to enhance ES cell migration is warranted. In this study we investigated ES cell migration under the influence of various extracellular matrix (ECM) proteins, which have been shown to stimulate cell migration in various cell models with unclear effects on ES cells. Using two mouse ES (mES) cell lines, ESC 26GJ9012-8-2 and ES-D3 GL, to generate embryoid bodies (EBs), we examined the migration of differentiating cells from EBs that were delivered onto culture surfaces coated with or without collagen I, collagen IV, Matrigel, fibronectin, and laminin. Among these ECM proteins, collagen IV exhibited maximal migration enhancing effect. mES cells expressed α2 and β1 integrin subunits and the migration enhancing effect of collagen IV was prevented by RGD peptides as well as antibodies against α2 and β1 integrins, indicating that the enhancing effect of collagen IV on cell migration was mediated by α2β1 integrin. Furthermore, staining of actin cytoskeleton that links to integrins revealed well-developed stress fibers and long filopodia in mES cells cultured on collagen IV, and the actin-disrupting cytochalasin D abolished the collagen IV-enhanced cell migration. In addition, pretreatment of undifferentiated or differentiated mES cells with collagen IV resulted in improved engraftment and growth after transplantation into the subcutaneous tissue of nude mice. Finally, collagen IV pretreatment of osteogenically differentiated mES cells increased osteogenic differentiation-like tissue and decreased undifferentiation-like tissue in the grafts grown after transplantation. Our results demonstrated that collagen IV significantly enhanced the migration of differentiating ES cells through α2β1 integrin-mediated actin remodeling and could promote ES cell transplantation efficiency, which may be imperative to stem cell therapy.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3