Transplantation of Cultured Autologous Melanocytes: Hope or Danger?

Author:

Czajkowski Rafal1,Pokrywczynska Marta1,Placek Waldemar2,Zegarska Barbara3,Tadrowski Tadeusz2,Drewa Tomasz1

Affiliation:

1. Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland

2. Department of Dermatology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland

3. Department of Cosmetology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland

Abstract

Cultured human melanocytes are increasingly being used in the treatment of vitiligo. The growth media contain various types of mitogenic factors, both recombinant human (e.g., rhbFGF and rhSCF) and synthetic (e.g., TPA). High concentrations of mitogenic factors accelerate the cell cycle, and consequently may increase the risk of carcinogenesis of transplanted cells. Mutations of genes of the RAS/RAF/MEK/ERK signaling pathway are very often found in the early stages of the development of melanoma. TPA is considered to be an oncogenic factor, but so far there is no evidence to show that it is responsible for damage to the genetic material of cultured melanocytes. The aim of our study was to assess the risk of the development of mutations in selected genes of the RAS/RAF/MEK/ERK signaling pathway during the culturing of melanocytes in various growth media. Based on the results obtained, it can be concluded that TPA and high concentrations of other growth factors intensify the proliferation of melanocytes, without the risk of damage to the HRAS (exon 1 and 2), KRAS (exon 1 and 2), NRAS (exon 1 and 2), and BRAF (exon 11 and 15) genes. In order to assess the total safety of the transplantation of cultured melanocytes, it is necessary to carry out further studies on other signaling pathways as well as carry out biological tests on an animal model.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3