Light Deprivation Induces Depression-Like Behavior and Suppresses Neurogenesis in Diurnal Mongolian Gerbil (Meriones unguiculatus)

Author:

Lau Benson Wui-Man1,Ren Chaoran2,Yang Jian1,Yan Sylvia W. L.1,Chang Raymond Chuen-Chung13,Pu Mingliang2,So Kwok-Fai14

Affiliation:

1. Department of Anatomy, The State Key Laboratory of Brain and Cognitive Sciences, Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China

2. Department of Anatomy and Embryology, School of Basic Medical Sciences, Key Laboratory on Machine Perception, Peking University, Beijing, PR China

3. Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China

4. Joint laboratory for Brain function and Health (BFAH), Jinan University and The University of Hong Kong, GuangZhou, PR China

Abstract

Recent evidence suggests that adult neurogenesis contributes to the pathophysiology of different psychiatric disorders, including depressive disorder, anxiety disorder, and schizophrenia. Seasonal affective disorder (SAD) is a specific form of recurrent depressive disorder that can be induced by shortened light period. It is unclear yet whether neurogenesis is affected in SAD or under altered light/dark cycle. The present study aims at examining whether neurogenesis and dendritic growth of immature neurons are affected in Mongolian gerbils, a mainly diurnal rodent, under light deprivation. Animals were divided into two groups: the control (kept in 12 h light:12 h dark) and the light-deprived groups (kept in 24 h dark). Depression-like behaviors and neurogenesis were assessed after 2 weeks. Compared with the control group, light-deprived gerbils showed increased immobile time in the tail suspension test and forced swimming test, which indicates induction of depression-like behavior. Cell proliferation in both the hippocampal and subventricular zone were significantly decreased in the light-deprived group, which also showed a decreased neuronal differentiation. Dendritic maturation of immature neurons was suppressed by light deprivation, which is revealed by doublecortin staining and Sholl analysis. The results revealed that the light/dark cycle exerts impacts on neurogenesis and maturation of new neurons. Additionally, the current experiment may offer a model for exploring the relationship among daylight exposure, circadian cycles, depressive behavior, and the underlying mechanisms.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3