Human Muse Cells, Nontumorigenic Phiripotent-Like Stem Cells, Have Liver Regeneration Capacity through Specific Homing and Cell Replacement in a Mouse Model of Liver Fibrosis

Author:

Iseki Masahiro12,Kushida Yoshihiro1,Wakao Shohei1,Akimoto Takahiro1,Mizuma Masamichi2,Motoi Fuyuhiko2,Asada Ryuta3,Shimizu Shinobu4,Unno Michiaki2,Chazenbalk Gregorio5,Dezawa Mari1

Affiliation:

1. Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan

2. Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan

3. Translational Research Center, Gifu University Graduate School of Medicine, Gifu, Japan

4. Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan

5. Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA

Abstract

Muse cells, a novel type of nontumorigenic pluripotent-like stem cells, reside in the bone marrow, skin, and adipose tissue and are collectable as cells positive for pluripotent surface marker SSEA-3. They are able to differentiate into cells representative of all three germ layers. The capacity of intravenously injected human bone marrow-derived Muse cells to repair an immunodeficient mouse model of liver fibrosis was evaluated in this study. The cells exhibited the ability to spontaneously differentiate into hepatoblast/hepatocyte lineage cells in vitro. They demonstrated a high migration capacity toward the serum and liver section of carbon tetrachloride-treated mice in vitro. In vivo, they specifically accumulated in the liver, but not in other organs except, to a lesser extent, in the lungs at 2 weeks after intravenous injection in the liver fibrosis model. After homing, Muse cells spontaneously differentiated in vivo into HepPar-1 (71.1±15.2%), human albumin (54.3±8.2%), and anti-trypsin (47.9±4.6%)-positive cells without fusing with host hepatocytes, and expressed mature functional markers such as human CYP1A2 and human Glc-6-Pase at 8 weeks after injection. Recovery in serum, total bilirubin, and albumin and significant attenuation of fibrosis were recognized with statistical differences between the Muse cell-transplanted group and the control groups, which received the vehicle or the same number of a non-Muse cell population of MSCs (MSCs in which Muse cells were eliminated). Thus, unlike ESCs and iPSCs, Muse cells are unique in their efficient migration and integration into the damaged liver after intravenous injection, nontumorigenicity, and spontaneous differentiation into hepatocytes, rendering induction into hepatocytes prior to transplantation unnecessary. They may repair liver fibrosis by two simple steps: expansion after collection from the bone marrow and intravenous injection. A therapeutic strategy such as this is feasible and may provide significant advancements toward liver regeneration in patients with liver disease.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3